

©Copy Right

 http://www.sirmasood.com Page | 102

Filing or IO Streaming in Turbo C/C++
 Chapter#

 14

In C/C++ programming, FILE is a place on your physical disk where information is stored.

Why File are needed?
 When a program is terminated, the entire data is lost. Storing in a FILE will preserve your data even if

the program terminates.

 If you have to enter a large number of data, it will take a lot of time to enter them all. However, if you
have a FILE containing all the data, you can easily access the contents of the FILE using few

commands in C.

 You can easily move your data from one computer to another without any changes.

Types of files
When dealing with FILEs, there are two types of FILEs you should know about:

1. Text FILEs
2. Binary FILEs

1. Text files
Text FILEs are the normal .txt FILEs that you can easily create using Notepad or any simple text editors .When

you open those FILEs, you'll see all the contents within the FILE as plain text. You can easily edit or delete
the contents.

They take minimum effort to maintain, are easily readable, and provide least security and takes bigger

storage space.

2. Binary files
Binary FILEs are mostly the .bin FILEs in your computer. Instead of storing data in plain text, they store it in

the binary form (0's and 1's). They can hold higher amount of data, are not readable easily and provides a

better security than text FILEs.

FILE Operations

In C/C++, you can perform four major operations on the FILE, either text or binary:

1. Creating a new FILE

2. Opening an existing FILE

3. Closing a FILE

4. Reading from and writing information to a FILE

In C/C++, A binary FILE is a series of characters or bytes for C/C++, attaches no special meaning. Any

structure to the data is determined by the application that reads from or writes to the FILE. A text FILE, in

contrast, is assumed to have only printable characters and a small set of control or formatting characters.

The Formatted characters are the binary equivalents of the escape sequences listed in following table.

©Copy Right

 http://www.sirmasood.com Page | 103

Filing or IO Streaming in Turbo C/C++
 Chapter#

 14

Escape

Sequences

Meaning Decimal Code Octal Hexadecimal

\r Line Feed 10 012 0A or \x0A

\n Carriage return 13 015 00 or \x0F

\t Horizontal tab 9 011 09 or \x09

\v Vertical tab 11 013 0B or \x0B

\f Form feed 12 012 0C or \x0C

Different operating system use different escape sequences to identify the end of a line. UNIX/Linux

platforms use the \n carriage return escape sequence, and Macintosh application usually use the \r line

feed escape sequence, and windows operating system use the \n carriage return escape sequence followed

by the \r line feed escape sequence.

 Escape sequence “\n” use for end- of- line in Unix/Linux Operating System.

 Escape sequences “\n\r” combine use for end- of- line in Windows Operating System. Escape

sequence “\r” use for end-of- line in Macintosh OS.

Working with files
When working with FILEs in C, you need to declare a pointer of type FILE. This declaration is needed for

communication between the FILE and program.

Syntax: FILE *fp

C/C++ provides a number of functions that helps to perform basic FILE operations. Following are the

functions,

Function Description

fopen() create a new FILE or open a existing FILE

fclose() closes a FILE

getc() reads a character from a FILE

putc() writes a character to a FILE

fscanf() reads a set of data from a FILE

fprinf() writes a set of data to a FILE

fgets() reads string specific length from a FILE

fputs() writes string to a FILE

fseek() set the position to desire point

ftell() gives current position in the FILE

rewind() set the position to the beginning point

©Copy Right

 http://www.sirmasood.com Page | 104

Filing or IO Streaming in Turbo C/C++
 Chapter#

 14

Opening a FILE: (for creation and edit)
To open a FILE you need to use the fopen function, which returns a FILE pointer. Once you've opened a

FILE, you can use the FILE pointer to let the compiler perform input and output functions on the FILE.

Syntax: *fp = FILE *fopen(const char *FILEname, const char *mode);

Mode Description

r opens a text FILE in reading mode

w Opens or create a text FILE in writing mode.

a opens a text FILE in append mode

r+ opens a text FILE in both reading and writing mode

w+ opens a text FILE in both reading and writing mode

a+ opens a text FILE in both reading and writing mode

rb opens a binary FILE in reading mode

wb opens or create a binary FILE in writing mode

ab opens a binary FILE in append mode

rb+ opens a binary FILE in both reading and writing mode

wb+ opens a binary FILE in both reading and writing mode

ab+ opens a binary FILE in both reading and writing mode

Example:
#include <stdio.>

void main()

{

 FILE *fp;

 fp=fopen("c:\\test.txt", "r");

}

This code will open test.txt for reading in text mode. To open a FILE in a binary mode you must write “rb”

to the mode string.

Closing a FILE:
To close a FILE, use the fclose() function.

©Copy Right

 http://www.sirmasood.com Page | 105

Filing or IO Streaming in Turbo C/C++
 Chapter#

 14

 Syntax: int fclose(FILE *fp);

Here fclose() function closes the FILE and returns zero on success, or EOF if there is an error in closing the

FILE. This EOF is a constant defined in the header FILE stdio.h.

Write one character into mytextFILE.txt FILE.

putc() is simplest functions used to write individual characters to a FILE.

Syntax: fputc(character,FILEpointer)

Example:

#include<conio.h>
#include <stdio.h>
void main()
{
 FILE *fp;
 char ch;

 clrscr();

 fp=fopen("mytextfile.txt","w");

 printf("Write a character : ");
 ch=getche();
 putc(ch,fp);
 fclose(fp);
}

In this program you will see create one FILE name is mytextfile.txt in source folder and one character k put

in this FILE.

Read one character from mytextfile.txt FILE.

getc() is simplest functions used to read individual characters to a FILE.

Syntax: varaible = getc(Filepointer)

©Copy Right

 http://www.sirmasood.com Page | 106

Filing or IO Streaming in Turbo C/C++
 Chapter#

 14

Example:

#include<conio.h>
#include <stdio.h>
void main()
{
 FILE *fp;
 char ch;

 clrscr();

 fp=fopen("mytextfile.txt","r");

 ch=getc(fp);
 printf(“%c”,ch);
 fclose(fp);
getche();
}

Input/Output operation on FILE

In the above table we have discussed about various FILE I/O functions to perform reading and

writing on FILE. getc() and putc() are simplest functions used to read and write individual

characters to a FILE.

Example:
#include<stdio.h>
 #include<conio.h>
 void main()
{
 FILE *fp;
 char ch;

 clrscr();
 fp = fopen("one.txt", "w");
 printf("Enter Character data : ");

 while((ch = getchar()) != 13)
 {
 putc(ch,fp);
 }

fclose(fp);

©Copy Right

 http://www.sirmasood.com Page | 107

Filing or IO Streaming in Turbo C/C++
 Chapter#

 14

 fp = fopen("one.txt", "r");
 printf("\n\n Read one by one character from FILE name is one.txt \n");
 while((ch = getc(fp)! = EOF)
 printf("%c",ch);

 fclose(fp);
}

(Reading and Writing from FILE using fprinf() and fscanf())

For reading and writing to a text FILE, we use the functions fprinf() and fscanf().

They are just the FILE versions of printf() and scanf().

Example Data Store :

#include<stdio.h>

#include<conio.h>

void main()

{

 int Roll,Age;

 char Name[20],key;

 FILE *fp1;

 fp1 = fopen("Data.txt", "w");

 clrscr();

 while(1)

 {

 printf("\nEnter Roll Number : ");

 scanf("%d", &Roll);

 printf("Enter Student Name : ");

 scanf("%s", &Name);

 printf("Enter Student Age : ");

 scanf("%d",&Age);

©Copy Right

 http://www.sirmasood.com Page | 108

Filing or IO Streaming in Turbo C/C++
 Chapter#

 14

 fprinf(fp1,"%d %s %d\n", Roll,Name,Age);

 printf("\nDo you want to add more Record [y/n] ");

 key=getche();

 if (key=='y' || key=='Y')

 continue ;

 else

 break;

}

fclose(fp1);
}

Example Data Read :

#include<stdio.h>

#include<conio.h>

void main()

{

 int Roll,Age,a=0;

 char Name[20];

 FILE *fp2;

 fp2 = fopen("Data.txt", "r");
 clrscr();

printf("roll Name Age \n");

printf("==============\n");

do

 {

 a++;

 fscanf(fp2,"%d %s %d\n",&Roll,&Name,&Age);

 printf("%d %s %d \n", Roll,Name,Age);

©Copy Right

 http://www.sirmasood.com Page | 109

Filing or IO Streaming in Turbo C/C++
 Chapter#

 14

 }

 while(a != 3);

 fclose(fp2);

 getche();

}

In this program, we have create two FILE pointers and both are referring to the same FILE but

in different modes. fprinf() function directly writes into the FILE, while fscanf() reads from

the FILE, which can then be printed on console using standard printf() function.

Reading and Writing from FILE using fputs() and fgets () functions

The C library function int fputs(const char *str, FILE *stream) writes a string to the specified stream up

to but not including the null character.

Syntax : int fputs(const char *str, FILE *stream)

 str − This is an array containing the null-terminated sequence of characters to be written.

 stream − This is the pointer to a FILE object that identifies the stream where the string is to be
written

Example
#include <stdio.h>

#include<conio.h>

void main ()

{

 FILE *fp;

 fp = fopen("Stringfile.txt", "w");

 clrscr();

 fputs("This is c programming. ", fp);

 fputs("This is a system programming language.", fp);

 printf("This is c programming and This is a system programming language.\n Above program has

been saved in Stringfile.txt");

 fclose(fp);

 }

©Copy Right

 http://www.sirmasood.com Page | 110

Filing or IO Streaming in Turbo C/C++
 Chapter#

 14

Let us compile and run the above program, this will create a FILE Stringfile.txt with the following content

Reading String Data:

The C/C++ library function char *fgets(char *str, int n, FILE *stream) reads a line from the specified

stream and stores it into the string pointed to by str. It stops when either (n-1) characters are read, the

newline character is read, or the end-of-FILE is reached, whichever comes first.

Syntax: char *fgets(char *str, int n, FILE *stream)

 str − This is the pointer to an array of chars where the string read is stored.

 n − This is the maximum number of characters to be read (including the final null-character). Usually,

the length of the array passed as str is used.

 stream − This is the pointer to a FILE object that identifies the stream where characters are read

from.

Example:

Now let's see the content of the above FILE using the following program

#include <stdio.h>

#include<conio.h>

void main ()

{ char st[81];

 FILE *fp;

 fp = fopen("StringFILE.txt", "r");

 clrscr();

 fgets(st,20,fp); // read 20 characters

 puts(st);

 fgets(st,60,fp); // read 60 characters

 puts(st);

 fclose(fp);

 }

©Copy Right

 http://www.sirmasood.com Page | 111

Filing or IO Streaming in Turbo C/C++
 Chapter#

 14

Reading and writing to a binary file

Functions fread() and fwrite() are used for reading from and writing to a FILE on the disk

respectively in case of binary FILEs.

The fwrite() function is used to write records (sequence of bytes) to the file. A record may be an array

or a structure. The fwrite() function takes four arguments.

 Syntax : fwrite(ptr, int size, int n, FILE *fp);

1. ptr : ptr is the reference of an array or a structure stored in memory.

2. size : size is the total number of bytes to be written.

3. n : n is number of times a record will be written.

4. FILE* : FILE* is a file where the records will be written in binary mode.

 Example
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>

 struct Student
 {
 int roll;
 char name[25];
 float per;
 };

 void main()
 {
 FILE *fp;
 char key,temp[20];
 struct Student Stu;
 clrscr();
 fp = fopen("Student.dat","w"); //Statement 1

 if(fp == NULL)
 {
 printf("\nCan't open file or file doesn't exist.");
 exit(0);
 }

 do
 {
 printf("\n\tEnter Roll : ");
 gets(temp);
 Stu.roll = atoi(temp);

©Copy Right

 http://www.sirmasood.com Page | 112

Filing or IO Streaming in Turbo C/C++
 Chapter#

 14

 printf("\tEnter Name : ");
 gets(Stu.name);

 printf("\tEnter Percentage : ");
 gets(temp);
 Stu.per = atof(temp);

 fwrite(&Stu,sizeof(Stu),1,fp);

 printf("\nDo you want to add another data (y/n) : ");
 key = getche();

 }while(key=='y' || key=='Y');

 printf("\nData written successfully...");

 fclose(fp);
 getche();
 }

Example: Read all record form using fwrite()

The fread() function is used to read bytes form the file. The fread() function takes four arguments.

©Copy Right

 http://www.sirmasood.com Page | 113

Filing or IO Streaming in Turbo C/C++
 Chapter#

 14

Syntax: read(ptr, int size, int n, FILE *fp);

1. ptr : ptr is the reference of an array or a structure where data will be stored after reading.

2. size : size is the total number of bytes to be read from file.

3. n : n is number of times a record will be read.

4. FILE* : FILE* is a file where the records will be read.

Example
#include <stdio.h>
#include <conio.h> // for use clrscr() and getche() functions
#include <stdlib.h> // for use exit(0) function
 struct Student
 {
 int roll;
 char name[25];
 float per;
 };

 void main()
 {
 FILE *fp;
 char ch;
 struct Student Stu;
 clrscr();
 fp = fopen("Student.dat","r"); //Statement 1

 if(fp == NULL)
 {
 printf("\nCan't open file or file doesn't exist.");
 exit(0);
 }

 printf("\n\tRoll\tName\t\tPercentage\n");

 while(fread(&Stu,sizeof(Stu),1,fp)>0)
 printf("\n\t%d\t%s\t%.3f",Stu.roll,Stu.name,Stu.per);

 fclose(fp);
 getche();
 }

©Copy Right

 http://www.sirmasood.com Page | 114

Filing or IO Streaming in Turbo C/C++
 Chapter#

 14

Example: Search Record (linear search)

#include <stdio.h>

#include <conio.h> // for use clrscr() and getche() functions

#include <stdlib.h> // for use exit(0) function

 struct Student

 {

 int roll;

 char name[25];

 float per;

 };

 void main()

 {

 FILE *fp;

 int mroll,found;

 char key;

 struct Student Stu;

 clrscr();

 fp = fopen("Student.dat","r"); //Statement 1

 if(fp == NULL)

 {

 printf("\nCan't open file or file doesn't exist.");

 exit(0);

 }

 while(1)

 {

 clrscr();

 found=0;

 printf("Enter Roll number For Search : ");

 scanf("%d",&mroll);

©Copy Right

 http://www.sirmasood.com Page | 115

Filing or IO Streaming in Turbo C/C++
 Chapter#

 14

 printf("\n\tRoll\tName\t\tPercentage\n");

 while(fread(&Stu,sizeof(Stu),1,fp)>0)

 {

 if(mroll == Stu.roll)

 { printf("\n\t%d\t%s\t%.3f",Stu.roll,Stu.name,Stu.per);

 found=1;

 break;

 }

 }

 rewind(fp);

 if(found==0)

 printf(" \n\n \t\t Record is nout found ");

 printf("\n\n Search Another Record [y/n] ");

 key=getche();

 if(key=='y' || key=='Y')

 continue;

 else

 break;

 }

 fclose(fp);

 }

 If record is not found then display following screen view

©Copy Right

 http://www.sirmasood.com Page | 116

Filing or IO Streaming in Turbo C/C++
 Chapter#

 14

The Fseek() Function

The C library function int fseek(FILE *stream, long int offset, int whence) sets the file position of the

stream to the given offset.

Syntax: int fseek(FILE *stream, long int offset, int whence)

1. tream − This is the pointer to a FILE object that identifies the stream.
2. offset − This is the number of bytes to offset from whence.
3. whence − This is the position from where offset is added. It is specified by one of the following

constants (SEEK_SET for beginning of file , SEEK_CUR for current position of fiel and SEEK_END
for end of file)

#include <stdio.h>

void main ()

{

 FILE *fp;

 fp = fopen("file.txt","w+");

 fputs("This is tutorialspoint.com", fp);

 fseek(fp, 7, SEEK_SET);

 fputs(" C Programming Language", fp);

 fclose(fp);

}

Let us compile and run the above program that will create a file file.txt with the following content.

Initially program creates the file and writes This is tutorialspoint.com but later we had reset the write

pointer at 7th position from the beginning and used fputs() statement which over-write the file with

the following content −

This is C Programming Language

©Copy Right

 http://www.sirmasood.com Page | 117

Filing or IO Streaming in Turbo C/C++
 Chapter#

 14

Exercise

Theory question

1. Why file are needed.

2. How many types of file.

3. How many operation in the file.

4. How many modes of file opening with detail.

Practical question

1. Write a program to copy one file to another.

2. Write a program to count total number of blank spaces in a file.

3. Write a program to count total characters, words and line in a file.

4. Write a menu driven program to add, display, search, update and delete the student

Objective MCQ’s

