Inheritance and its types in Java Chapter#11

In this chapter, we will be learning about of inheritance in Java and the types of inheritance and with help of
example.

Inheritance is one of the key features of OOP that allows us to create a new class from an existing class. In Java,
it is possible to inherit attributes and methods from one class to another.

The new class that is created is known as subclass (child or derived class) and the existing class from where the
child class is derived is known as superclass (parent or base class).

The idea behind inheritance in Java is that you can create new classes that are built upon existing classes. When
you inherit from an existing class, you can reuse methods and fields of the parent class. Moreover, you can add
new methods and fields in your current class also.

Class: A class is a group of objects which have common properties. It is a template or blueprint from which
objects are created.

Sub Class/Child Class: Subclass is a class which inherits the other class. It is also called a derived class,
extended class, or child class.

Super Class/Parent Class/Base Class: Superclass is the class from where a subclass inherits the features. It is
also called a base class or a parent class.

Reusability: As the name specifies, reusability is a mechanism which facilitates you to reuse the fields and
methods of the existing class when you create a new class. You can use the same fields and methods already
defined in the previous class.

Why and when Importance of Java inheritance
Implementation of inheritance in Java provides the following benefits:

1) Inheritance minimizes the complexity of a code by minimizing duplicate code. If the same code has to be
used by another class, it can simply be inherited from that class to its sub-class. Hence, the code is better

organized.

2) It is useful for code reusability, reuse attributes and methods of an existing class when you create a new
class.

3) The efficiency of execution of a code increases as the code is organized in a simpler form.

4) The concept of polymorphism can be used along with inheritance.
Note: the extends keyword is used to perform inheritance in Java. If you don't want other classes to inherit
from a class, use the final keyword:
The basic syntax is

class superclass { final class superclass {
} }

class subclass extends superclass

{

}
©Copy Right
http://www.sirmasood.com Page | 95

Inheritance and its types in Java Chapter# 11

Types of Java Inheritance
The different types of inheritance are observed in Java:

Single level inheritance
Multi-level Inheritance
Hierarchical Inheritance
Multiple Inheritance
Hybrid Inheritance

vk wN e

1) Single level inheritance

As the name suggests, this type of inheritance occurs for only a single class. Only one class is derived from the
parent class.

The flow diagram of a single inheritance is shown below:

Class Human

A 4

Class Student

Constructors and Inheritance

constructor of sub class is invoked when we create the object of subclass, it by default invokes the default
constructor of super class. Hence, in inheritance the objects are constructed top-down. The superclass
constructor can be called explicitly using the super keyword, but it should be first statement in a constructor.
The super keyword refers to the superclass, immediately above of the calling class in the hierarchy. The use of
multiple super keywords to access an ancestor class other than the direct parent is not permitted.

©Copy Right
http://www.sirmasood.com Page | 96

Inheritance and its types in Java Chapter# 11

Example of Single Inheritance in java

package exampleof.inheritance; package exampleof.inheritance;

public class Human { public class Students extends Human {
private String Id; private String Roll;
private String Name; private int Attandance;
private String FatherName; private float Percentage;

private String Contact;
private String Address;
public Students(String i,String n,String fString
c,String a,String roll,int attandance,float per)
{

super(i,n,f,c,a);

public Human(String id,String name, String
fname,String contact,String address)

¢ Roll =roll;
Id =id;
Attandance = attandance;
Name = name;
Percentage = per;
FatherName = fname;

}
Contact = contact;
Address = address; . .
) public void display()
{
super.display();

public void display()
{
System.out.printin("Id is "+Id);

System.out.printin("Roll # is "+Roll);
System.out.printIn("Attandance is "+Attandance);

H n H n noyznmy.
System.out. printin("Name is "+Name); System.out.printIn("Percentage is "+Percentage +" %");

System.out.printIn("Father Name is "+FatherName);
System.out.printin("Contact # is "+Contact);

System.out.printin("Address is "+Address);

package exampleof.inheritance;
public class ExampleOfinheritance
{
public static void main(String|] args)
{
Students st = new Students("A-98","Ali","Asif","11122","Karachi","a-32",14,68.66f);
st.display();

©Copy Right
http://www.sirmasood.com Page | 97

Inheritance and its types in Java Chapter# 11

File Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help [search (cti+D)

DO et @ F W DB

5 |Pro... x|Files |Services| — || StartPage |[& ExampleCfinheritance java [[E] Human java x| [&] Students java x| o
5 |2 & ExampleOfInheritance Eomeel| Histor & . [~ B | eE 2 #: _=
L 7 vt v BB \ﬁ%&: PPl EeEe B W #
3 0 exampleof.nheritance 1 package exampleof.inheritance; ~m
® i [ExampleOfinheritan: 2 . .
- 3 public class ExampleOfInheritance
| Human.java f ¢
Students.java
[# TestPackages s
(8 Libraries € ~ R R B R
7 public static void main(String[] args)
(B TestLibraries B .
) Students st = new Students ("A-93","ALi","Asif","11122","Karachi","a-32",14, 68.665); —|
10 st.display():
11
12
13 B
14 1
15
16 +
17
v
> x
Output - Example0f Inheritance (run) X -
Y- -
M| Id is a-ve
m| Feme is Bi3
Father Name is Asif
88| Contact # is 11122
Address is Karachi
Roll # is a-32
Attandance 1is 14
Percentage is 63.66 %
BUILD SUCCESSFUL (total time: 0 seconds)
< > 4
17:1 | s

2) Multi-level Inheritance

The multi-level inheritance includes the involvement of at least two or more than two classes. One class inherits
the features from a parent class and the newly created sub-class becomes the base class for another new class.

A flow diagram of multi-level inheritance

Class Human

Class Student

Class Teacher

©Copy Right
http://www.sirmasood.com Page | 98

Inheritance and its types in Java

Chapter# 11

package exampleofmultilevel_inheritance;
public class Human {

private String Id;

private String Name;
private String FatherName;
private String Contact;
private String Address;

public Human()

{
Id ="42101-2872727-1";
Name = "Muhammad Ali";
FatherName = "Muhammad Usman";
Contact ="0313282828";
Address = "Karachi";

}

public void HumanDisplay()

{
System.out.printin("Id is "+1d);
System.out.printin("Name is "+Name);
System.out.printIn("Father Name is "+FatherName);
System.out.printIn("Contact # is "+Contact);
System.out.printIn("Address is "+Address);

}

package exampleofmultilevel_inheritance;

public class Students extends Human({
private String Roll;
private int Attandance;
private float Percentage;

public Students()
{

Roll ="M-172";
Attandance = 23;
Percentage = 67;

©Copy Right
http://www.sirmasood.com

Page | 99

Inheritance and its types in Java Chapter# 11

}

public void StudentDisplay()
{

System.out.printin("Roll # is "+Roll);
System.out.printIn("Attandance is "+Attandance);
System.out.printIn("Percentage is "+Percentage +" %");

}
}

package exampleofmultilevel_inheritance;

public class Teacher extends Students

{
private String Id;
private String Subject;
private String Department;

public Teacher()
{

Id="T-12";

Subject = "Java";

Department = "CIT";
}

public void TeacherDisplay()
{

System.out.printin("Id # is "+Id);
System.out.printin("Subject is "+Subject);
System.out.printin("Department is "+Department);
1
}

public class ExampleOfMultiple_Inheritance

{

public static void main(String[] args)

{

Teacher objTea = new Teacher();
objTea.HumanDisplay();
objTea.TeacherDisplay();

©Copy Right
http://www.sirmasood.com Page | 100

Inheritance and its types in Java

Chapter# 11

Output - ExampleOfMultiple_Inheritance (run) >

Id is 42101-2872727-1

Hame is Muhammad Ali

Father Name is Muhammad Usman
Contact # is 0313282828
Address is EKarachi

Id # is T-1z2

Sukject is Java

®RETT

Department is CIT
BUILD SUCCESSFUL (total time: 0 seconds)

v

3) Hierarchical Inheritance

| 1R:2M14:230 NS

The type of inheritance where many subclasses inherit from one single class is known as Hierarchical

Inheritance.

Human

/ AN

Students Teachers

package exampleof. Hierarchical _inheritance;
public class Human

{
private String Id;

private String Name;
private String FatherName;
private String Contact;

private String Address;

public Human(String id,String name, String fname,String contact,String address)

{
Id =id;

Name = name;

©Copy Right
http://www.sirmasood.com

Page | 101

Inheritance and its types in Java Chapter# 11

FatherName = fname;
Contact = contact;

Address = address;

public void display()

{
System.out.printin("1d is "+Id);

System.out.printIn("Name is "+Name);
System.out.printin("Father Name is "+FatherName);
System.out.printin("Contact # is "+Contact);

System.out.printIn("Address is "+Address);
1
}

package exampleof. Hierarchical _inheritance;

public class Students extends Human {
private String Roll;
private int Attandance;

private float Percentage;

public students(String i,String n,String f,String c,String a,String roll,int attandance,float per)
{
super(i,n,f,c,a);
Roll =roll;
Attandance = attandance;
Percentage = per;
1
public void display()
{
super.display();
System.out.printin("Roll # is "+Roll);
System.out.printIn("Attandance is "+Attandance);

System.out.printIn("Percentage is "+Percentage +" %");

}
}

package exampleof. Hierarchical_inheritance;

public class Teacher extends Human {

private String Id;

©Copy Right
http://www.sirmasood.com Page | 102

Inheritance and its types in Java

Chapter# 11

private String Subject;
private String Department;
public Students(String i,String n,String f,String c,String a,String id,String subject,String department)
{
super(i,n,f,c,a);
Id =id;
Subject = subject;
Department = department;
}
public void display()
{
super.display();
System.out.printin("Id # is "+Id);
System.out.printIn("Subject is "+Subject);

System.out.printIn("Department is "+Department);

}
}

package exampleof. Hierarchical _inheritance;
public class ExampleOfinheritance

{
public static void main(String|] args)

{

Teacher objTea=new Teacher("B-56","Muhamamd Masood","Muhammad Rafique","98263211","Karachi","T-1","Java","CIT");

objTea.display(); }

File Edit View Mavigate Source Refactor Run Debug Profile Team Tools Window Help

‘Q. Search (Cirl+I)

TS S D@ ek L Q@-F W DG

= [pro... x‘rn“ ‘sﬂ-m“‘ — |[startPage x[[& ExampleOfMultiple_Inheritance.java x Human.java X |[#] Students.java [[€] Teacherjava X =]
g E-& ExampleOfMultiple_Inheritance || source History | B-E- ‘ [l el =) ‘ FLw ‘ & ‘ Y ‘ ® s ®
2 & @ Source Packages . e
2 . B[exampleofmultiple_inher . . .
® ! B ot package exampleofmultiple inheritance:
i Human,java 3
i Students.java :) . .
H - 5 public class ExampleOfMultiple Inheritance
: L Teacher.java —
(1 TestPackages : ¢
(& Lbraries
(& TestLibraries : =
a public static void main(Stringl] args)
10 1
11
12 Teacher objTea = new Teacher ("E "Muhamamd Masood", "Muhammad Rafique","98263211","Karachi","T-1","Java", "CIT");
13
12 System.out.println{"-=—==—=-=—=—
15 obiTea.display():
16
17 3 v
£ exampleofmultile_inheritance . ExampleOfMultiple_Inheritance 3 () main x
Output - ExampleOfMultiple_Inheri trum) =
> . ~
3
a Name is Muhamamd Masood
%8| Facher Name is Muhammad Rafique
Contact # is 98263211
Address is Karachi
Id # is T-1
Subject is Java
Department is CIT
BUILD SUCCESSFUL (total time: O seconds)
< > hd
13:8 | INS

Inheritance and its types in Java Chapter# 11

Multiple Inheritance

Multiple inheritances are a type of inheritance where a subclass can inherit features from more than one parent
class. To reduce the complexity and simplify the language, multiple inheritance is not supported in java.

Consider a scenario where A, B, and C are three classes. The C class inherits A and B classes. If A and B classes
have the same method and you call it from child class object, there will be ambiguity to call the method of A or
B class. Since compile-time errors are better than runtime errors, Java renders compile-time error if you inherit
2 classes. So whether you have same method or different, there will be compile time error.

As per above diagram, Class C extends Class A and Class B both.

Class A Class B

Class C

class A

{
void msg()
{ System.out.printin("Hello");
}

}

class B

{
void msg()
{ System.out.printIn("Welcome");
}

}

class C extends A,B{ // suppose if it were but there error because not support multiple inheritance

public static void main(String args[])
{
C obj=new C();
obj.msg();//Now which msg() method would be invoked?
}
}

In java, we can achieve multiple inheritances only through Interfaces. In the image above, Class C is derived
from interface A and B.

©Copy Right
http://www.sirmasood.com Page | 104

Inheritance and its types in Java

Refactor Run Debug Profile Team Tools Window Help

Chapter# 11

Q- Search (Ctrl+I)

File Edit Vi vigate Source
FEHES D ewen QT W DG

Projects X |Files | Services | — || StartPage ([Multiple_Inheritanceljava x| o

=& multple_Inheritancel Sowrce | Hstory [[@E-F-QABSFREL(IPELR |(iRileo 5| o

=

&[4 Source Packages

5[5 multple_inheritance1 package multiple inheritancel;
multiple_inheritance —

(Z) Navigator T

[TestPackages interface A (
5lp Libraries default void msg()
6-[B TestUbraries T ! . . I
System.out.println("Eslla”):
]
¥
interface B {
default void msg()
{
System.out.println("Welcom=");
}
¥

—

{
public void msg()
1

A.super.msg() :

B.super.msg () ;
]

public static void main(String[] args)

[

}

obj.msg()

public class Multiple Inheritancel implements & ,B

Multiple Inheritancel obj = new Multiple Inheritancel():

ut - multiple_Inheritancet (run) X

Hello
Welcome
BUILD SUCCESSFUL (total time: 0 seconds)

SS [=]
V¥ vleauneyneeseeeslEtittiitgaovan@an -

INS

package multiple_inheritancel;

public class Multiple_Inheritancel implements A ,B
{

public void msg()

{

// Using super keyword to call the show method of A interface
A.super.msg();

// Using super keyword to call the show method of B interface
B.super.msg();

public static void main(String[] args)

{

Multiple_Inheritancel obj = new Multiple_Inheritancel();
obj.msg();

interface A {
default void msg()
{
System.out.printin("Hello");
}
}

interface B {
default void msg()
{
System.out.printin("Welcome");
}

}

©Copy Right
http://www.sirmasood.com

Page | 105

Inheritance and its types in Java Chapter# 11

Hybrid Inheritance

Hybrid inheritance is a type of inheritance that combines single inheritance and multiple inheritances. As multiple
inheritances are not supported by Java, hybrid inheritance can also be achieved through interfaces only.

Parant Class

Child Clazs Child Class
a B

™\

Child Class
L=

Interface

An interface is a fully abstract class.it is looks like a class but it is not a class. An interface can have methods and
variables just like the class but the methods declared in interface are by default abstract (only method signature,
without body), We use the interface keyword to create an interface in Java.

Why and when we use interface

We need as one of Java's core concepts, abstraction, polymorphism, and multiple inheritance are supported
through this technology.

Syntax

class Demo implements Mylnterface interface MylInterface

{ {
/* This class must have to implement both the abstract methods
* else you will get compilation error

// All the methods are public abstract by default
// As you see they have no body

*/

public void method1() public void method1();

{ public void method2();
System.out.printIn("implementation of method1"); }

}

public void method2()
{
System.out.printIn("implementation of method1");

}
!

package exampleofinterface;
public class ExampleOfinterface
{

public static void main(String[] args)
{
TestInterface objinterface = new TestInterface();

objinterface.method1();
objinterface.method2();
}

©Copy Right
http://www.sirmasood.com Page | 106

Inheritance and its types in Java Chapter# 11

Example of Bank

interface Bank{
float rateOfInterest();
}

class SBl implements Bank

{
public float rateOfInterest()

{
return 9.15f;

}

class PNB implements Bank
{
public float rateOfInterest()

{

return 9.7f;

}

class TestInterface2{
public static void main(String[] args)
{
Bank b=new SBI();
System.out.println("ROI: "+b.rateOfInterest());
}
}

It is used to achieve total abstraction. Since java does not support multiple inheritances in the case of class, by
using an interface it can achieve multiple inheritances. It is also used to achieve loose coupling.

©Copy Right
http://www.sirmasood.com Page | 107

Inheritance and its types in Java Chapter# 11

Exercise

Theory Questions

1. Whatis inheritance and its types.

2. Why and when Importance of Java inheritance

3. What do you mean by interface?

4. Why and when we use interface.

5. Why we use extends and final keyword in java language

Practical Questions

1. Write syntax of inheritance classes.
2. Write example of interface in the OOP.

Objective MCQ’s

1) Injava not supported to inheritance.
a) Multiple
b) Multilevel
c) single level
d) notall
2) InJava, itis possible to attributes and methods from one class to another
a) constructor
b) object
c) inherit
d) access modifier
3) Subclass is a class which inherits the other class. It is also called a class.
a) derived
b) child
c) super
d) aandb both
4) If you don't want other classes to inherit from a class, use the
a) extends
b) public
c) final
d) private
5) The keyword is used to perform inheritance in Java
a) final
b) private
c) public
d) extends

keyword:

6) interface is used to achieve
a) Total Abstract
b) Multiple inheritance
c) Loos coupling
d) all

©Copy Right
http://www.sirmasood.com Page | 108

